A Method to Prioritize Sources for Reducing High PM_{2.5} Exposures in Environmental Justice Communities in California

Prof. Joshua Apte, PISarah Chambliss, PhD Candidate
The University of Texas at Austin

Prof. Julian Marshall Dr. Chris Tessum The University of Washington

California ARB Research Seminar

26 November 2019

Key findings

- There is a wide range in the exposure rates, or **intake fraction**, of different source categories and locations.
- We find significant exposure disparity by income, race, and in disadvantaged communities (DACs).
- Nearly all major source categories in CA contribute to PM_{2.5} disparities.
- Top sources for intake and disparity include the industrial sector, on-road and off-road mobile sources, and the natural gas and petroleum industry.
- The intake fraction database can be used to evaluate the efficiency of control measures.

Prior work: EJ and air pollution

Persistent disparities in PM_{2.5} concentrations in California

Improvement in 0.4% exposure disparity between lowincome nonwhites 0.0% and high-income whites attributable to a 10% emission -0.4%reduction

Total diesel particle emissions (tonnes per day)

Marshall et al. (2014) Environ Sci & Tech

Decision-support tools for iF and EJ

- Map shows where emissions of PM_{2.5} from diesel engines cause a greater exposure gap between white and minority populations.
- Colors indicate changes in EJ based on the difference in average air pollution exposure in minority communities vs. white communities.

Target emissions in areas where impact and disparity are highest

EJ research: two key needs

Model at appropriate spatial resolution

Proximity of emissions and people drives inequalities

Paolella et al., 2018

Include secondary PM_{2.5}

Secondary PM generally > 50% of all exposure.

References:

Marshall, J. D., Swor, K. R. & Nguyen, N. P. Prioritizing environmental justice and equality: diesel emissions in Southern California. *Environmental Science & Technology* **48**, 4063–4068 (2014).

Paolella, D. A. et al. Effect of model spatial resolution on estimates of fine particulate matter exposure and exposure disparities in the United States. *Environ. Sci. Technol. Lett.* **5**, 436–441 (2018).

Su, J. G. *et al.* An index for assessing demographic inequalities in cumulative environmental hazards with application to Los Angeles, California. *Environmental Science & Technology* **43**, 7626–7634 (2009).

Project objectives

Generate comprehensive database of iF and EJ metrics

- Location-specific and sector-specific
- · Primary PM_{2.5} and secondary PM_{2.5} (SOA, pSO₄, pNO₃, and pNH₄)
- Intake metrics by race/ethnicity, income quintile, age, and other socioeconomic groups, including SB 535 Disadvantaged Communities

Apply database as screening tool

- · Model exposure concentrations from 11 major sectors and 59 subsectors
- · Identify top sources contributing to exposure disparity

Provide spatial database and summary metrics as tool for comparing policies for exposure reduction

· In-person training to follow this seminar

Methods

InMAP: Intervention Model for Air Pollution

Reduced complexity model enables 1000s of simulations

Variable grid resolution

- scales with population density
- 1×1 km in urban areas
- 2-12 km in in less dense areas

Treatment of secondary PM_{2.5}

- Primary PM_{2.5}
- Secondary PM from NOx, SOx, NH₃, VOC

Model for annual average PM_{2.5}

All processes are annual-average:
 Transport, reaction rates, emissions, plume-rise, chemical transformation, removal

Source-oriented exposure assessment

Sources vary immensely in ability to produce exposure.

Research agenda: elucidate emissions → exposure relationship

3 key factors: Population, Proximity & Persistence

Source-receptor matrix from InMAP

At source location (S)

increase in annual emissions

of PM_{2.5} and its precursors

leads to

increase in annual average concentration of PM_{2.5} at receptor location (R)

- The S→R relationship is calculated between all possible pairs of 21,180 InMAP grid cells
- ~ 4.5 million S→R pairs in California
- Includes S→R relationship of a cell with itself

Goodkind et al PNAS 2019

Source-oriented exposure assessment

Intake for single receptor:

 $(\Delta PM_{2.5} \text{ from } \Delta E \text{ at } S)$

× (population in R)

× (breathing rate)

Model effects at receptors (R), then trace them back to the source (S)

Source-oriented exposure metrics

Intake

- The total amount of an air pollutant emitted by a specific source that is inhaled by the population per day
- Proportional to population size
- May be integrated over multiple pollutants

$$ext{intake} = \sum_{i=1}^n C_i Q_i$$

C_i, concentration (g m⁻³) for person i n, number of people Q_i, breathing rate (m³ d⁻¹) for person i 380 g d⁻¹

Intake fraction

- The fraction of emissions from a specific source that are inhaled by the population
- Proportional to population size
- Specific to pollutant, location, and height

$$iF = rac{1}{E} \sum_{i=1}^n C_i Q_i$$

C_i, concentration (g m⁻³) for person i n, number of people Q_i, breathing rate (m³ d⁻¹) for person i E, total emissions (g d⁻¹) 15 ppm

(g inhaled per tonne emitted)

Source-oriented EJ metrics

Relative Percent Difference (RPD)

The percentage difference in PM_{2.5} intake between the EJ-focused subpopulation and a comparison group

$$RPD = rac{|\mu_{CG} - \mu_{VP}|}{\mu}$$

 μ_{CG} , mean per-capita intake in comparison group

 μ_{VP} , mean per-capita intake in specified vulnerable population

μ, population mean per-capita intake

25%

Intake Difference

The absolute difference in PM_{2.5} intake between the EJ-focused subpopulation and a comparison group

$$egin{aligned} & ext{intake difference} \ & = \sum_{i=1}^n C_{iG} Q_i - \sum_{i=1}^n C_{io} Q_i \end{aligned}$$

C_{iG}, C_{iO}, concentration (g m⁻³) for person i within the group of interest (iG) or within the group of others (iO)

n, number of people

Q_i, breathing rate (m³ d⁻¹) for person i, assumed equal across groups

380 g d⁻¹

Sector-specific summary metrics

- The total intake from a source category is calculated by adding together the intake from emissions in that category at each source location (S)
- This calculation integrates emissions of different pollutant species and emissions at different plume heights into single intake value

Emissions inventory and sector categories

Demographics in model domain

	Population Size	%
White non-Hispanic	17,200,000	40%
Hispanic/Latinx	15,600,000	37%
Asian	5,500,000	13%
Black	2,400,000	6%
Multiracial/Other	1,700,000	4%

Example of differences in demographic patterns: Race in the Los Angeles area

Population data from 2016 American Community Survey: 5-Year Data

CA disadvantaged communities (DAC)

Limitations of this methodology

This is a screening tool, not a substitute for more rigorous exposure modeling.

Model limitations:

- Reduced-form model with some inaccuracy.
- Performs moderately well when evaluated against more complex models or monitoring data.
- · Only provides information on annual-averages.
- Key limitation: atmospheric chemistry is based on 2005 NEI. The substantial reduction in NO_X and SO_X emissions leads to error in calculating concentrations and iF of secondary inorganics, with error most prominent in pNH₄.
 - We do not emphasize results for the agricultural sector. Nearly all intake derives from livestock NH₃ emissions.

Exposure limitations:

- · Based on census residential patterns. Does not account for activity patterns.
- Outdoor concentrations, does not account for differential infiltration rates in different building types.
- · Uniform breathing rate, over time and over different groups.

Key Findings

Concentration ≠ Emissions

Concentration ≠ Emissions

Intake = emissions × intake fraction

Sources with high iF result in disproportionately high intake.

Top 10% of emissions of each $PM_{2.5}$ component \rightarrow 48% of CA intake.

iF varies by sector

Example iF maps: total population

Example iF maps: total population

Primary PM_{2.5} iF maps: by race

Primary PM_{2.5} iF maps: by race

Particulate NO₃ iF maps: by race

Primary PM_{2.5} intake and iF by sector

Intake and intake fraction by sector

High impact strategies may target sectors with high emissions and high iF.

Examples:

On-road mobile sources Industry

Primary PM_{2.5} intake by sector

Primary PM_{2.5} intake by subsector

Primary PM_{2.5} intake by subsector

Total primary PM_{2.5} intake = 597 kg

Primary PM_{2.5} Emissions (kt / y)

Disparity in pop-wt concentrations

Disadvantaged communities experience 45% higher PM_{2.5}

concentrations. All major source categories contribute to disparity.

Disparity by race/ethnicity greater than income

Source Categories

- A. Agriculture
- B. Construction
- C. Commercial Cooking
- D. Electricity Generation
- E. Fugitive Dust
- F. Industrial
- G. Misc. Fuel Combustion
- H. Natural Gas & Petroleum
- I. Off-Road Mobile Sources
- J. On-Road Mobile Sources
- K. Residential Sources (Outdoor Air)

Disparity by race/ethnicity greater than income

Source Categories

- A. Agriculture
- B. Construction
- C. Commercial Cooking
- D. Electricity Generation
- E. Fugitive Dust
- F. Industrial
- G. Misc. Fuel Combustion
- H. Natural Gas & Petroleum
- I. Off-Road Mobile Sources
- J. On-Road Mobile Sources
- K. Residential Sources (Outdoor Air)

Focus sector: on-road mobile sources

Population-Weighted Average Exposure Concentration (µg/m³)

Net sector disparity in DACs: 0.9 μg m⁻³ PM_{2.5}.

Relative disparity: 53%

Largest contributions to disparity:

Gasoline on-road: 0.53 µg m⁻³

• Diesel-on-road: 0.29 µg m⁻³

	Average	Total Δ for DACs (μg/m^3)	Relative Δ for DACs
Diesel HDV	0.53	0.29	54%
Diesel LCV	0.06	0.03	40%
Diesel Passenger	0.01	0.00	43%
Gasoline LCV	0.05	0.02	35%
Gasoline HDV	0.02	0.01	48%
Gasoline Passenger	0.97	0.53	54%
Refueling	0.01	0.00	39%
Total	1.65	0.87	53%

Focus sector: industrial sources

Population-Weighted Average Exposure Concentration (µg/m³)

Net sector disparity in DACs: 1.0 μg m⁻³ PM_{2.5}.

Relative disparity: 59%

Largest contributions to disparity:

- Materials storage/transport: 0.23 µg m⁻³ (+111%)
- Industrial fuel combustion: 0.23 µg m⁻³
- Waste disposal and incineration: 0.17 µg m⁻³

Aposure Concentration (pg/m/)			
	Average	Total Δ for DACs (μg/m^3)	Relative Δ for DACs
Chemical Manufacturing	0.02	0.02	71%
Cogeneration	0.01	0.00	47%
Concrete and Cement	0.01	0.00	3%
Fuel Combustion	0.36	0.23	64%
Waste Disposal & Incin.	0.46	0.17	36%
Metals Processing	0.01	0.00	15%
Surface Mining	0.02	-0.01	-34%
Other	0.28	0.21	75%
Solvent Utilization	0.26	0.11	44%
Storage and Transport	0.21	0.23	111%
Total	1.64	0.97	59%

Focus sector: nat. gas and petroleum

Population-Weighted Average Exposure Concentration (µg/m³)

Net sector disparity in DACs: 0.2 μg m⁻³ PM_{2.5.}

High relative disparity: 70%

Largest contributions to disparity:

- Petroleum refining: 0.07 μg m⁻³ (+102%)
- Oil and gas production: 0.07 µg m⁻³

	Average	Total Δ for DACs (μg/m^3)	Relative Δ for DACs
Asphalt Manufact.	0.01	0.01	57%
Oil & Gas Production	0.09	0.07	74%
Petroleum Refining	0.07	0.07	102%
Petroleum TSM	0.06	0.01	24%
Total	0.22	0.16	70%

Focus sector: off-road mobile sources

Population-Weighted Average Exposure Concentration (µg/m³)

Net sector disparity in DACs: 0.3 μg m⁻³ PM_{2.5.} Relative disparity: 52%

Largest contributions to disparity:

Aircraft: 0.08 μg m⁻³ (+100%)

• Rail: 0.08 µg m⁻³ (+100%)

	Average	Total Δ for DACs (μg/m^3)	Relative Δ for DACs
Aircraft	0.08	0.08	100%
Diesel	0.10	0.05	55%
Gasoline	0.15	0.04	29%
Marine	0.09	0.01	7%
Other	0.01	0.01	63%
Rail	0.08	0.08	100%
Total	0.50	0.26	52%

Exposure disparity by sub-sector emissions

% Difference in population-weighted concentration compared to population average

Many emissions sub-sectors have large relative disparity for black population

e.g. Aviation, Refining

x-axis = Relative % difference for black vs. avg.

y-axis = Sub-sector contribution to pop-wt avg. $PM_{2.5}$

Exposure disparity by sub-sector emissions

Percent difference in population-weighted exposure concentration compared with population average

Location matters.

Some emissions sub-sectors result in especially disparate exposures for certain races & ethnicities.

Exposure disparity in DACs: primary PM

Disparity: concentration in disadvantaged (DAC) vs. non-DAC communities

Location matters.

< 5% of emissions drive the 1.6 µg m⁻³ primary PM_{2.5} exposure disparity for disadvantaged vs. non-disadvantaged communities.

What sources drive DAC disparity?

Future research directions

Model development

- · Apply this dataset to most up-to-date ARB emissions datasets.
- · Update InMAP chemistry for present-day and future atmospheres.
- · Compare and validate core sectoral results against other datasets: state-of-science atmospheric models, measurements, etc.

· Analysis

- · Evaluate metrics for specific regions and air basins.
- Characterize exposure and EJ effects of possible decarbonization strategies.
- Identify possible high-impact strategies to jointly reduce disparity & total exposure.

Key conclusions

- · Screening method for linking CA emissions to intake and disparity.
- · Substantial disparities by race. Smaller disparities by income.
 - · 45% greater-than-average exposure in DACs.
- · No single "culprit": nearly all sectors contribute to disparities.
 - · High absolute disparity for DACs: on-road mobile, industry.
 - · High relative disparity for DACs: oil and gas, off-road mobile
- Location, location. Dense urban environments have much higher iF than other release locations.
 - Emissions in high-iF locations have disproportionate impact on intake and on disparity/EJ.
 - Emissions location often explains differential impact more than the specific source category.

Tool and data will be publicly available. We invite you to use it!